Solid dispersions in the form of electrospun core-sheath nanofibers
نویسندگان
چکیده
BACKGROUND The objective of this investigation was to develop a new type of solid dispersion in the form of core-sheath nanofibers using coaxial electrospinning for poorly water-soluble drugs. Different functional ingredients can be placed in various parts of core-sheath nanofibers to improve synergistically the dissolution and permeation properties of encapsulated drugs and to enable drugs to exert their actions. METHODS Using acyclovir as a model drug, polyvinylpyrrolidone as the hydrophilic filament-forming polymer matrix, sodium dodecyl sulfate as a transmembrane enhancer, and sucralose as a sweetener, core-sheath nanofibers were successfully prepared, with the sheath part consisting of polyvinylpyrrolidone, sodium dodecyl sulfate, and sucralose, and the core part composed of polyvinylpyrrolidone and acyclovir. RESULTS The core-sheath nanofibers had an average diameter of 410 ± 94 nm with a uniform structure and smooth surface. Differential scanning calorimetry and x-ray diffraction results demonstrated that acyclovir, sodium dodecyl sulfate, and sucralose were well distributed in the polyvinylpyrrolidone matrix in an amorphous state due to favoring of second-order interactions. In vitro dissolution and permeation studies showed that the core-sheath nanofiber solid dispersions could rapidly release acyclovir within one minute, with an over six-fold increased permeation rate across the sublingual mucosa compared with that of crude acyclovir particles. CONCLUSION The study reported here provides an example of the systematic design, preparation, characterization, and application of a novel type of solid dispersion consisting of multiple components and structural characteristics.
منابع مشابه
Synthesis of Polypyrrole Coated SnO2-ZnO Electrospun Nanofibers via Vapor Phase Polymerization Method
This paper reports the synthesis of polypyrrole coated SnO2/ZnOelectrospunnanofibers via vapor phase polymerization method. In order to prepare one dimensional (SnO2- ZnO)/polypyrrole with the core sheath structure, first SnO2-ZnO composite nanofibers were synthesized via electrospinning method followed by adsorption of Fe 3+ on the surface of the SnO2-ZnO nanofibers and finally pyrrole w...
متن کاملPreparation and characterization of electrospun core sheath nanofibers from multi-walled carbon nanotubes and poly(vinyl pyrrolidone).
Electrospinning is a versatile technique to prepare polymer fibers in nano to micrometer size ranges using very high electrostatic fields. Electrospun nanofibers with tunable porosity and high specific surface area have various applications, including chromatographic supports for protein separation, biomedical devices, tissue engineering and drug delivery matrices, and as key components in sola...
متن کاملA novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles.
This study describes development of a novel controlled drug release system for multiple drugs, it consisted of Chitosan nanoparticles/PCL composite electrospun nanofibers with core-sheath structures. Two model agents' rhodamine B and naproxen were successfully loaded in the core and sheath region respectively. The behavior of these two agents demonstrated a good controlled release and temporali...
متن کاملFabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous m...
متن کاملDesign and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery
Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodresp...
متن کامل